Learning Deep Representations By Distributed Random Samplings
نویسنده
چکیده
In this paper, we propose an extremely simple deep model for the unsupervised nonlinear dimensionality reduction – deep distributed random samplings. First, its network structure is novel: each layer of the network is a group of mutually independent k-centers clusterings. Second, its learning method is extremely simple: the k centers of each clustering are only k randomly selected examples from the training data; for small-scale data sets, the k centers are further randomly reconstructed by a simple cyclic-shift operation. Experimental results on nonlinear dimensionality reduction show that the proposed method can learn abstract representations on both large-scale and small-scale problems, and meanwhile is much faster than deep neural networks on large-scale problems.
منابع مشابه
Nonlinear Dimensionality Reduction of Data by Deep Distributed Random Samplings
Dimensionality reduction is a fundamental problem of machine learning, and has been intensively studied, where classification and clustering are two special cases of dimensionality reduction that reduce high-dimensional data to discrete points. Here we describe a simple multilayer network for dimensionality reduction that each layer of the network is a group of mutually independent k-centers cl...
متن کاملSymbolic, Distributed and Distributional Representations for Natural Language Processing in the Era of Deep Learning: a Survey
Natural language and symbols are intimately correlated. Recent advances in machine learning (ML) and in natural language processing (NLP) seem to contradict the above intuition: symbols are fading away, erased by vectors or tensors called distributed and distributional representations. However, there is a strict link between distributed/distributional representations and symbols, being the firs...
متن کاملGlobal Warming: New Frontier of Research Deep Learning- Age of Distributed Green Smart Microgrid
The exponential increase in carbon-dioxide resulting Global Warming would make the planet earth to become inhabitable in many parts of the world with ensuing mass starvation. The rise of digital technology all over the world fundamentally have changed the lives of humans. The emerging technology of the Internet of Things, IoT, machine learning, data mining, biotechnology, biometric, and deep le...
متن کاملLearning deep representations via extreme learning machines
Extreme learning machine (ELM) as an emerging technology has achieved exceptional performance in large-scale settings, and is well suited to binary and multi-class classification, as well as regression tasks. However, existing ELM and its variants predominantly employ single hidden layer feedforward networks, leaving the popular and potentially powerful stacked generalization principle unexploi...
متن کاملDeepTox: Toxicity Prediction using Deep Learning
The Tox21 Data Challenge has been the largest effort of the scientific community to compare computational methods for toxicity prediction. This challenge comprised 12,000 environmental chemicals and drugs which were measured for 12 different toxic effects by specifically designed assays. We participated in this challenge to assess the performance of Deep Learning in computational toxicity predi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.4405 شماره
صفحات -
تاریخ انتشار 2013